Scaling limits for subcritical planar Laplacian growth models

James Norris joint work with Vittoria Silvestri and Amanda Turner

University of Cambridge

Stochastics and Geometry, BIRS 9th September 2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$ALE(\alpha, \eta)$ – a family of Laplacian growth models

We will formulate a class of planar growth processes, whose state K_t at time $t \geq 0$ is a compact set in the plane, starting from the closed unit disk K_0 , growing by discrete jumps, and such that $D_t = (\mathbb{C} \cup {\infty}) \setminus K_t$ remains simply connected.

It is convenient to encode K_t via the unique conformal isomorphism $\Phi_t: D_0 \to D_t$ such that $\Phi_t(\infty) = \infty$ and $\Phi'_t(\infty) > 0$.

The data for ALE (α, η) , besides the two parameters $\alpha, \eta \in \mathbb{R}$, are a choice of capacity parameter $c \in (0, \infty)$ which determines the scale of the individual particles added in each jump, a choice of regularization parameter $\sigma \in (0,\infty)$ which determines the scale of feedback in the model, and a choice of a family of single-particle maps $(F_c : c \in (0, \infty))$, where F_c corresponds to a particle of capacity c.

Examples of particle families are slits or disks.

$ALE(\alpha, \eta)$

ALE(α , η) is a Markov chain $\Phi = (\Phi_t)_{t \geq 0}$ of conformal maps

$$
\Phi_t:D_0\to D_t\subseteq D_0,\quad D_0=\{|z|>1\}
$$

Φ jumps from ϕ to $\phi \circ F_{c(\theta,\phi),\theta}$ at rate $\lambda(\theta,\phi)d\theta$ for $\theta \in [0,2\pi]$

$$
F_{c,\theta}(z) = e^{i\theta} F_c(e^{-i\theta} z), \quad F_c(z) = e^c \left(z + \sum_{k=0}^{\infty} a_k(c) z^{-k}\right)
$$

$$
c(\theta,\phi)=c|\phi'(e^{\sigma+i\theta})|^{-\alpha}, \quad \lambda(\theta,\phi)=c^{-1}|\phi'(e^{\sigma+i\theta})|^{-\eta}
$$

Particles eg small sticks or disks, diameter \sim $\sqrt{}$ c

$$
|\phi'(e^{i\theta})| = \frac{d\ell}{d\theta} = \frac{d(\text{arc length})}{d(\text{harmonic measure})}
$$

KELK KØLK VELKEN EL 1990

We take as initial state $\Phi_0(z) = z$.

 $ALE(\alpha, n)$

Φ jumps from ϕ to $\phi \circ F_{c(\theta,\phi),\theta}$ at rate $\lambda(\theta,\phi)$ for $\theta \in [0,2\pi]$

$$
c(\theta,\phi)=c|\phi'(e^{\sigma+i\theta})|^{-\alpha},\quad\lambda(\theta,\phi)=c^{-1}|\phi'(e^{\sigma+i\theta})|^{-\eta}
$$

The cluster $K_t = \mathbb{C} \setminus \Phi_t(D_0)$ is uniquely encoded by the map $\Phi_t.$

The effect on the current cluster K of a jump from ϕ to $\phi \circ F_{c,\theta}$ is to add to K the small set $\phi({\text e}^{i\theta}P_c)$, where P_c is the particle added to K_0 by F_c .

KORKAR KERKER SAGA

We study the behaviour of \mathcal{K}_t in the limit $c\rightarrow 0$, $\sigma\rightarrow 0$.

Fluid limit? – the $LK(\zeta)$ equation

$$
\dot{\phi}_t(z) = z\phi'_t(z)\int_0^{2\pi} \frac{1}{2\pi} \frac{z+e^{i\theta}}{z-e^{i\theta}} |\phi'_t(e^{\sigma+i\theta})|^{-\zeta} d\theta
$$

This is the radial Loewner–Kufarev equation in D_0 with feedback through the driving measure

$$
\mu_t(d\theta) = |\phi_t'(e^{\sigma + i\theta})|^{-\zeta} d\theta.
$$

Formally it should describe the fluid limit for a wide range of planar Laplacian growth models: eg DLA $\zeta = 2$, Eden model $\zeta = 1$, dielectric breakdown model $\zeta \geq 1$.

$$
\blacktriangleright \zeta = 0 \text{ solution } \phi_t(z) = \phi_0(e^t z)
$$

 $\triangleright \zeta = 2, \sigma = 0$ (Hele–Shaw flow) has nice algebraic structure (via $|z|^2 = z\bar{z}$) and a well-developed theory

▶ otherwise poorly understood

$LK(\zeta)$

$$
\dot{\phi}_t(z) = z\phi'_t(z)\int_0^{2\pi} \frac{1}{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} |\phi'_t(e^{\sigma + i\theta})|^{-\zeta} d\theta
$$

- ▶ local existence and uniqueness for analytic solutions holds for analytic initial data
- \blacktriangleright disk solutions

$$
\phi_t(z) = e^{\tau_t} z, \quad \dot{\tau}_t = e^{-\zeta \tau_t}, \quad \tau_t = \zeta^{-1} \log(1 + \zeta t)
$$

Expect good behaviour for $\zeta \leq 1$ but fractal / turbulent behaviour for $\zeta > 1$

ALE(α , η) is a stochastic discretized version of LK($\alpha + \eta$).

Does LK(ζ) describe the scaling limit as $c, \sigma \to 0$ of ALE (α, η) in the subcritical case $\zeta = \alpha + \eta \leq 1$?

Fractal behaviour is observed in simulations of ALE when $\zeta > 1$.

Result

Theorem (Comm. Math. Phys. 2024)

Let $(K_t)_{t\geq 0}$ be an ALE (α, η) starting from the unit disk.

Assume that $\zeta = \alpha + \eta \leq 1$ and that $c, \sigma \to 0$ with \blacktriangleright $\sigma \gg c^{1/2}$ in the case $\zeta < 1$ \blacktriangleright $\sigma \gg c^{1/3}$ in the case $\zeta = 1$.

Then K_t converges weakly to a disk of radius e^{τ_t} for all $t \ge 0$.

Suppose further that

- \blacktriangleright $\sigma \gg c^{1/4}$ in the case $\zeta < 1$
- \blacktriangleright $\sigma \gg c^{1/5}$ in the case $\zeta = 1$.

Then $(\Phi_t(z) - e^{\tau_t}z)/\sqrt{2}$ \overline{c} converges weakly to an explicit Gaussian limit.

Interpolation formula for fluid limits

 $(X_t)_{t\geqslant0}$ a Markov chain, state-space E, jump kernel $\lambda(x, dy)$ $\dot{x}_t = b(x_t)$, where *b* is a vector field on *E* We use

▶ the linear map $P_{ts}v_s = v_t$ where $\dot{v}_t = \nabla b(x_t)v_t$ for $t \geq s$

▶ the compensated jump measure $\tilde{\mu}^X$ of X

► the drift
$$
\beta
$$
 of *X*.

Assume that $X_0 = x_0$. Then $X_t - x_t = M_t + A_t$ where

$$
M_t = \int_{E \times (0,t]} P_{ts}(y - X_{s-}) \tilde{\mu}^X(dy, ds)
$$

$$
A_t = \int_0^t P_{ts}(\beta(X_s) - b(x_s) - \nabla b(x_s)(X_s - x_s)) ds.
$$

[Compute the martingale decomposition of $(P_{ts}(X_s - x_s))_{0 \leq s \leq t}$.]

State-space and norms for ALE

$$
\Phi_t(z) = e^{\mathcal{T}_t} \hat{\Phi}_t(z), \quad \hat{\Phi}_t(z) = z + \sum_{k=0}^{\infty} a_k(t) z^{-k}
$$

We take as state variables

$$
(\mathcal{T}_t, \Psi_t) \in E = \mathbb{R} \times \mathcal{H}(D_0)
$$

where $\Psi_t(z)=\hat\Phi_t(z)-z$ and $\mathcal H(D_0)$ is the set of holomorphic functions on D_0 bounded at ∞ .

$$
\|\psi\|_{p,r} = \left(\frac{1}{2\pi} \int_0^{2\pi} |\psi(re^{i\theta})|^p d\theta\right)^{1/p}
$$

For $\rho \in (1, r)$ and $D\psi(z) = z\psi'(z)$,

$$
\|\psi\|_{\infty,r} \leqslant \left(\frac{\rho}{r-\rho}\right)^{1/p} \|\psi\|_{p,\rho}
$$

$$
\|D\psi\|_{p,r} \leqslant C \left(\frac{\rho}{r-\rho}\right) \|\psi\|_{p,\rho}.
$$

L^p-estimates for multiplier operators

$$
M\psi(z)=\sum_{k=0}^{\infty}m(k)\psi_kz^{-k}, \quad \psi(z)=\sum_{k=0}^{\infty}\psi_kz^{-k}.
$$

An easy calculation shows that

$$
||M\psi||_{2,r}\leqslant \sup_{k} |m(k)|||\psi||_{2,r}.
$$

Marcinkiewicz's multiplier theorem gives a similar estimate for $p \geqslant 2$. Suppose

$$
|m(0)|\leqslant A(M), \quad \sum_{k=0}^\infty |m(k+1)-m(k)|\leqslant A(M).
$$

For all $p \ge 2$, there is a constant $C = C(p) < \infty$ such that

$$
||M\psi||_{p,r}\leqslant CA(M)||\psi||_{p,r}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Linearization of $LK(\zeta)$ around a disk solution

$$
b(\phi)(z) = D\phi(z)\int_0^{2\pi} \frac{1}{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} |\phi'(e^{\sigma + i\theta})|^{-\zeta} d\theta
$$

Consider the first variation equation $\dot{\psi}_t = \nabla b(\phi_t) \psi_t$ along the disk solution $\phi_t(z)=e^{\tau_t}z$ for variations $\psi\in \mathcal{H}(D_0).$ We compute

$$
\nabla b(\phi_t)\psi(z) = -Q\psi(z)\dot{\tau}_t
$$

where, for $q(k)=k(1-\zeta e^{-\sigma(k+1)}),$

$$
Q\psi(z)=\sum_{k=0}^{\infty}q(k)\psi_kz^{-k},\quad \psi(z)=\sum_{k=0}^{\infty}\psi_kz^{-k}.
$$

So, for $s \leq t$.

$$
\psi_t = P_{ts}\psi_s = P(\tau_t - \tau_s)\psi_s, \quad P(\tau) = e^{-\tau Q}.
$$

Marcinkiewicz gives the useful bounds

$$
||DP(\tau)\psi||_{p,r} \leqslant \begin{cases} C(p)/((1-\zeta)\tau), & \zeta < 1\\ C(p)/(\tau \wedge (\sigma\tau)^{1/2}), & \zeta = 1. \end{cases}
$$

L^p -estimates for martingales

Burkholder's inequality states that, for all $p \geq 2$, there is a constant $C(p) < \infty$ such that, for all martingales M and all $t \geq 0$,

$$
||M_t^*||_p \leqslant C(p) \left(||\langle M \rangle_t||_{p/2}^{1/2} + ||(\Delta M)^*||_p \right)
$$

.

Here

$$
M_t^*=\sup_{s\leqslant t}|M_s|,\quad (\Delta M)_t^*=\sup_{s\leqslant t}|\Delta M_s|.
$$

When M has the form

$$
M_t = \int_{(0,t] \times E} H(s,y)\tilde{\mu}(ds,dy)
$$

for H previsible and $\tilde{\mu}$ a compensated Poisson random measure of intensity $ds \otimes \lambda(dy)$, the terms on the right are given by

$$
\langle M \rangle_t = \int_0^t \int_E |H(s, y)|^2 \lambda(dy) ds
$$

$$
(\Delta M)_t^* \leq \sup_{s \leq t, y \in E} |H(s, y)|.
$$

Fluid limit interpolation in function spaces

 $(X_t)_{t\geqslant 0}$ a Markov chain, state-space $C(E)$ say

X jumps from $x = (x(z) : z \in E)$ by $\Delta(x, \theta) \in C(E)$ at rate $\lambda(x, \theta) d\theta$ for $\theta \in [0, 2\pi]$

 $x_t = b(x_t)$, where b is a vector field on $C(E)$

 \overline{a}

We can write X in terms of a random measure μ on $[0, 2\pi] \times (0, \infty)$ with previsible compensator $\lambda(X_{t-}, \theta) d\theta dt$

$$
X_t(z) = x_0(z) + \int_{[0,2\pi] \times (0,t]} \Delta(X_{s-},\theta)(z) \mu(d\theta, ds).
$$

Then the interpolation formula takes the form $X_t - x_t = M_t + A_t$ where

$$
M_u(z) = \int_{[0,2\pi] \times (0,u]} P_{ts} \Delta(X_{s-}, \theta)(z) \tilde{\mu}(d\theta, ds)
$$

$$
A_t(z) = \int_0^t P_{ts} (\beta(X_s) - b(x_s) - \nabla b(x_s)(X_s - x_s))(z) ds.
$$

Estimation of $M_t(z)$ in $L^p(E, dz)$

Apply Burkholder's inequality to $(M_u(z))_{u \leq t}$ for each z and then integrate to obtain

$$
\|\|M_t\|_p := \left(\mathbb{E}\int_E |M_t(z)|^p dz\right)^{1/p} = \|\|M_t\|_{L^p(\Omega)}\|_{L^p(E)}
$$

\$\leqslant C(p) \left(\|\langle M(.)\rangle_t\|_{p/2}^{1/2} + \|\langle \Delta M(.)\rangle_t^*\|_{p}\right).

Now

$$
\langle M(z)\rangle_t = \int_0^t \int_0^{2\pi} |P_{ts}\Delta(X_s,\theta)(z)|^2 \lambda(X_s,\theta)d\theta ds
$$

so

$$
\|\langle M(.)\rangle_t\|_{L^{p/2}(E)} \leqslant \int_0^t \int_0^{2\pi} \|P_{ts}\Delta(X_s,\theta)\|_{L^p(E)}^2 \lambda^*(\theta) d\theta ds
$$

and so

$$
\|\langle M(.)\rangle_t\|_{p/2}\leqslant \int_0^t \|P_{ts}\|_{p\to p}^2 ds \int_0^{2\pi} \|\Delta^*(\theta)\|_p^2 \lambda^*(\theta) d\theta.
$$

We would like to understand ...

Dynamics for the LK(ζ) equation, especially the case $\zeta = 1$. What is the domain of attraction for disks?

Limits for the case $\zeta=1$ and $\sigma=c^{1/3}.$ For a closely related model, formally, we see convergence of fluctuations to the KPZ equation on long time-scales.

For $\zeta > 1$ the LK(ζ) equation fails to capture the dynamics. So What does the driving measure for ALE look like when $\zeta > 1$ and c is small?

 \Box