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ALE(«,n) — a family of Laplacian growth models

We will formulate a class of planar growth processes, whose state
K: at time t > 0 is a compact set in the plane, starting from the
closed unit disk Ky, growing by discrete jumps, and such that

D; = (CU{o0}) \ Kt remains simply connected.

It is convenient to encode K; via the unique conformal
isomorphism ®; : Dy — D; such that ®+(c0) = co and () > 0.

The data for ALE(«, ), besides the two parameters o, € R, are
a choice of capacity parameter ¢ € (0,00) which determines the
scale of the individual particles added in each jump, a choice of
regularization parameter o € (0, 00) which determines the scale of
feedback in the model, and a choice of a family of single-particle
maps (Fc : ¢ € (0,00)), where F. corresponds to a particle of
capacity c.

Examples of particle families are slits or disks.



ALE(a, 1)

ALE(«,n) is a Markov chain ® = (®;);>0 of conformal maps
&, : Dy — Dy C Dy, DOZ{’Z|>1}

® jumps from ¢ to ¢ o F 4 at rate A(0, ¢)d6 for 6 € [0, 27]
Foo(z) = €9F(e72), Fo(z) =e° <z +> ak(c)z_k>
k=0

c(0,0) = cl¢/(e”T0) 7, A(0,¢) = c ¢/ (7 )|

Particles eg small sticks or disks, diameter ~ \/c

()] = de d(arc length)
df  d(harmonic measure)

We take as initial state ®¢(z) = z.



ALE(a, n)
® jumps from ¢ to ¢ o F(y )¢ at rate A(60, ¢) for 0 € [0, 2]

c(0,9) = cl@' (") 7%, A0, ) = ¢! (7)) 7"
The cluster Ky = C\ ®+(Dp) is uniquely encoded by the map ®;.

The effect on the current cluster K of a jump from ¢ to ¢po F. g is
to add to K the small set ¢(e””P,.), where P, is the particle added
to Ko by Fe.

We study the behaviour of K; in the limit ¢ — 0, 0 — 0.



Fluid limit? — the LK(() equation

27 1 z+ei9
2z — e

6(2) = 2¢4(2) /0 |¢(e 7)< db

This is the radial Loewner—Kufarev equation in Dy with feedback
through the driving measure

pe(d8) = |0 (77|~ db.

Formally it should describe the fluid limit for a wide range of
planar Laplacian growth models: eg DLA ¢ = 2, Eden model
¢ =1, dielectric breakdown model ¢ > 1.

» ¢ = 0 solution ¢;(z) = ¢o(e'z)

» ( =2,0 =0 (Hele-Shaw flow) has nice algebraic structure
(via |z|? = zZ) and a well-developed theory

» otherwise poorly understood



LK(¢)

27 1 z+ei9
2z — e

CACARS T

() = 201(2) |

» local existence and uniqueness for analytic solutions holds for
analytic initial data

» disk solutions
bi(z) =€z, T =e T, 1 =("tlog(1l+(t)

» expect good behaviour for ¢ < 1 but fractal / turbulent
behaviour for { > 1

ALE(«, ) is a stochastic discretized version of LK(« + 7).

Does LK(() describe the scaling limit as ¢,0 — 0 of ALE(«,7) in
the subcritical case ( = a+n < 17

Fractal behaviour is observed in simulations of ALE when ¢ > 1.



Result

Theorem (Comm. Math. Phys. 2024)

Let (Kt)t=0 be an ALE(a,m) starting from the unit disk.

Assume that ( = o+ 1 < 1 and that c,0c — 0 with
> o> c/2 in the case ¢ < 1
> o> c/3 in the case ¢ = 1.

Then K; converges weakly to a disk of radius €™ for all t > 0.

Suppose further that
> o> c/* in the case ¢ < 1
> o> c/5 in the case ¢ = 1.

Then (®+(z) — e™z)/\/c converges weakly to an explicit Gaussian
limit.



Interpolation formula for fluid limits

(Xt)e=0 a Markov chain, state-space E, jump kernel A(x, dy)

x¢ = b(x¢), where b is a vector field on E

We use
» the linear map Pisvs = v; where vy = Vb(x¢)v; for t > s
> the compensated jump measure jiX of X
» the drift 5 of X.

Assume that Xg = xp. Then X; — x; = M; + A; where

M, = / Pesly — Xe_ )i (dy, ds)
Ex(0,t]

A = / " Pu(B(Xs) — b(xs) — Vb(xs)(Xs — x5))ds.
0

[Compute the martingale decomposition of (P:s(Xs — Xs))o<s<t-]



State-space and norms for ALE

P(z) = eTt&)t(Z)y &’t(Z) =z+ Zak(t)z_k
k=0

We take as state variables
(T, V) € E =R x H(Dy)

where W,(z) = ®;(z) — z and #(Dy) is the set of holomorphic
functions on Dy bounded at oc.

1 2w . 1/p
61e = (5 [ teeiPat)
For p € (1,r) and Dy(z) = z¢/(2),
p

1/p
ol < (2] W6l

0
1005 < € () 1l



L P-estimates for multiplier operators

Mip(z) = m(kK)z ™, P(z) = vuz "
k=0 k=0

An easy calculation shows that
IMY]l2,r < sup [m(K) |2,

Marcinkiewicz's multiplier theorem gives a similar estimate for
p = 2. Suppose

m(O)] < AM), > [m(k+1) = m(k)| < A(M).
k=0

For all p > 2, there is a constant C = C(p) < oo such that

M)

pr < CAM)|[Y]|p,r-



Linearization of LK(() around a disk solution

2 1 z 4 el
2rz — eif

b(6)(2) = Dé(2) /O 6/(e7) [~ do

Consider the first variation equation 1)y = Vb(¢:)t; along the disk
solution ¢+(z) = e™z for variations ¢ € H(Dp). We compute

Vb(¢e)(z) = —Qip(2)7¢
where, for q(k) = k(1 — Ce—a(kﬂ)),

=> a(kez ™, P(2) =) vz "
k=0 k=0
So, for s < t,
e = Pisths = P(1t — 75)10s,  P(7T) = e 79,

Marcinkiewicz gives the useful bounds

Cp)/(1=0Or), (<1
IDP(7)¢llp.r < {C(p)/(T Norl), -1



LP-estimates for martingales

Burkholder's inequality states that, for all p > 2, there is a
constant C(p) < oo such that, for all martingales M and all t > 0,

1Ml < Co) (IKM)ell})5 + I1(AM) )
Here

Mf:sup\MSL (AM)t:SUP‘AMs"
s<t

s<t

When M has the form
M; = / H(s, y)ii(ds, dy)
(0,t]xE

for H previsible and i a compensated Poisson random measure of
intensity ds ® A(dy), the terms on the right are given by

_ ' 2
(M), = /0 /E |H(s, y) 2A(dy)ds
(AM); < sup |H(s,y)l|

s<t,yeE



Fluid limit interpolation in function spaces

(Xt)t=0 a Markov chain, state-space C(E) say

X jumps from x = (x(z) : z € E) by A(x,60) € C(E)
at rate \(x, 6)d@ for 6 € [0, 27]

x¢ = b(xt), where b is a vector field on C(E)

We can write X in terms of a random measure u on
[0,27] x (0, 00) with previsible compensator A(X:_, 0)dfdt

X(2) =0(2) + [ A(Xs,0)(2)yu(d6, ds).
[0,27] % (0,t]
Then the interpolation formula takes the form X; — x; = M; + A;

where

M, (z) = / PuA(Xe_, 0)(2)ji(d0, ds)
[0,27] % (0,u]

Ai(z) = /0 Pes(B(Xs) — b(xs) — Vb(xs)(Xs — xs))(z)ds.



Estimation of M,(z) in LP(E, dz)

Apply Burkholder's inequality to (M,(z))u<t for each z and then
integrate to obtain

1/p
I Ml = (E / |Mt(z)|"dz) Ml ey

C(p) (M) I3+ I (AMO);lp) -

Now
t 27
(I\/l(z))t:// |Pes A(Xs, 0)(2)[PA(Xs, 0)dbds
0 JO
SO
t 27 )
MOy < [ [ 1P ) e ¥ (01
and so

21
M) el < / 1Pl /0 |A*(8) |27 (8)db.



We would like to understand ...

Dynamics for the LK(() equation, especially the case ( = 1. What
is the domain of attraction for disks?

Limits for the case ¢ =1 and o = ¢/3. For a closely related
model, formally, we see convergence of fluctuations to the KPZ
equation on long time-scales.

For ¢ > 1 the LK(¢) equation fails to capture the dynamics. So
What does the driving measure for ALE look like when ¢ > 1 and
c is small?




