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ALE(α, η) – a family of Laplacian growth models

We will formulate a class of planar growth processes, whose state
Kt at time t ⩾ 0 is a compact set in the plane, starting from the
closed unit disk K0, growing by discrete jumps, and such that
Dt = (C ∪ {∞}) \ Kt remains simply connected.

It is convenient to encode Kt via the unique conformal
isomorphism Φt : D0 → Dt such that Φt(∞) = ∞ and Φ′

t(∞) > 0.

The data for ALE(α, η), besides the two parameters α, η ∈ R, are
a choice of capacity parameter c ∈ (0,∞) which determines the
scale of the individual particles added in each jump, a choice of
regularization parameter σ ∈ (0,∞) which determines the scale of
feedback in the model, and a choice of a family of single-particle
maps (Fc : c ∈ (0,∞)), where Fc corresponds to a particle of
capacity c.

Examples of particle families are slits or disks.



ALE(α, η)

ALE(α, η) is a Markov chain Φ = (Φt)t⩾0 of conformal maps

Φt : D0 → Dt ⊆ D0, D0 = {|z | > 1}

Φ jumps from ϕ to ϕ ◦ Fc(θ,ϕ),θ at rate λ(θ, ϕ)dθ for θ ∈ [0, 2π]

Fc,θ(z) = e iθFc(e
−iθz), Fc(z) = ec

(
z +

∞∑
k=0

ak(c)z
−k

)

c(θ, ϕ) = c |ϕ′(eσ+iθ)|−α, λ(θ, ϕ) = c−1|ϕ′(eσ+iθ)|−η

Particles eg small sticks or disks, diameter ∼
√
c

|ϕ′(e iθ)| = dℓ

dθ
=

d(arc length)

d(harmonic measure)

We take as initial state Φ0(z) = z .



ALE(α, η)

Φ jumps from ϕ to ϕ ◦ Fc(θ,ϕ),θ at rate λ(θ, ϕ) for θ ∈ [0, 2π]

c(θ, ϕ) = c |ϕ′(eσ+iθ)|−α, λ(θ, ϕ) = c−1|ϕ′(eσ+iθ)|−η

The cluster Kt = C \ Φt(D0) is uniquely encoded by the map Φt .

The effect on the current cluster K of a jump from ϕ to ϕ ◦ Fc,θ is
to add to K the small set ϕ(e iθPc), where Pc is the particle added
to K0 by Fc .

We study the behaviour of Kt in the limit c → 0, σ → 0.



Fluid limit? – the LK(ζ) equation

ϕ̇t(z) = zϕ′t(z)

� 2π

0

1

2π

z + e iθ

z − e iθ
|ϕ′t(eσ+iθ)|−ζdθ

This is the radial Loewner–Kufarev equation in D0 with feedback
through the driving measure

µt(dθ) = |ϕ′t(eσ+iθ)|−ζdθ.

Formally it should describe the fluid limit for a wide range of
planar Laplacian growth models: eg DLA ζ = 2, Eden model
ζ = 1, dielectric breakdown model ζ ⩾ 1.

▶ ζ = 0 solution ϕt(z) = ϕ0(e
tz)

▶ ζ = 2, σ = 0 (Hele–Shaw flow) has nice algebraic structure
(via |z |2 = zz̄) and a well-developed theory

▶ otherwise poorly understood



LK(ζ)

ϕ̇t(z) = zϕ′t(z)

� 2π

0

1

2π

z + e iθ

z − e iθ
|ϕ′t(eσ+iθ)|−ζdθ

▶ local existence and uniqueness for analytic solutions holds for
analytic initial data

▶ disk solutions

ϕt(z) = eτtz , τ̇t = e−ζτt , τt = ζ−1 log(1 + ζt)

▶ expect good behaviour for ζ ⩽ 1 but fractal / turbulent
behaviour for ζ > 1

ALE(α, η) is a stochastic discretized version of LK(α+ η).

Does LK(ζ) describe the scaling limit as c , σ → 0 of ALE(α, η) in
the subcritical case ζ = α+ η ⩽ 1?

Fractal behaviour is observed in simulations of ALE when ζ > 1.



Result

Theorem (Comm. Math. Phys. 2024)

Let (Kt)t⩾0 be an ALE(α, η) starting from the unit disk.

Assume that ζ = α+ η ⩽ 1 and that c , σ → 0 with

▶ σ ≫ c1/2 in the case ζ < 1

▶ σ ≫ c1/3 in the case ζ = 1.

Then Kt converges weakly to a disk of radius eτt for all t ⩾ 0.

Suppose further that

▶ σ ≫ c1/4 in the case ζ < 1

▶ σ ≫ c1/5 in the case ζ = 1.

Then (Φt(z)− eτtz)/
√
c converges weakly to an explicit Gaussian

limit.



Interpolation formula for fluid limits

(Xt)t⩾0 a Markov chain, state-space E , jump kernel λ(x , dy)

ẋt = b(xt), where b is a vector field on E

We use

▶ the linear map Ptsvs = vt where v̇t = ∇b(xt)vt for t ⩾ s

▶ the compensated jump measure µ̃X of X

▶ the drift β of X .

Assume that X0 = x0. Then Xt − xt = Mt + At where

Mt =

�
E×(0,t]

Pts(y − Xs−)µ̃
X (dy , ds)

At =

� t

0
Pts(β(Xs)− b(xs)−∇b(xs)(Xs − xs))ds.

[Compute the martingale decomposition of (Pts(Xs − xs))0⩽s⩽t .]



State-space and norms for ALE

Φt(z) = eTt Φ̂t(z), Φ̂t(z) = z +
∞∑
k=0

ak(t)z
−k

We take as state variables

(Tt ,Ψt) ∈ E = R×H(D0)

where Ψt(z) = Φ̂t(z)− z and H(D0) is the set of holomorphic
functions on D0 bounded at ∞.

∥ψ∥p,r =
(

1

2π

� 2π

0
|ψ(re iθ)|pdθ

)1/p

For ρ ∈ (1, r) and Dψ(z) = zψ′(z),

∥ψ∥∞,r ⩽

(
ρ

r − ρ

)1/p

∥ψ∥p,ρ

∥Dψ∥p,r ⩽ C

(
ρ

r − ρ

)
∥ψ∥p,ρ.



Lp-estimates for multiplier operators

Mψ(z) =
∞∑
k=0

m(k)ψkz
−k , ψ(z) =

∞∑
k=0

ψkz
−k .

An easy calculation shows that

∥Mψ∥2,r ⩽ sup
k

|m(k)|∥ψ∥2,r .

Marcinkiewicz’s multiplier theorem gives a similar estimate for
p ⩾ 2. Suppose

|m(0)| ⩽ A(M),
∞∑
k=0

|m(k + 1)−m(k)| ⩽ A(M).

For all p ⩾ 2, there is a constant C = C (p) <∞ such that

∥Mψ∥p,r ⩽ CA(M)∥ψ∥p,r .



Linearization of LK(ζ) around a disk solution

b(ϕ)(z) = Dϕ(z)

� 2π

0

1

2π

z + e iθ

z − e iθ
|ϕ′(eσ+iθ)|−ζdθ

Consider the first variation equation ψ̇t = ∇b(ϕt)ψt along the disk
solution ϕt(z) = eτtz for variations ψ ∈ H(D0). We compute

∇b(ϕt)ψ(z) = −Qψ(z)τ̇t

where, for q(k) = k(1− ζe−σ(k+1)),

Qψ(z) =
∞∑
k=0

q(k)ψkz
−k , ψ(z) =

∞∑
k=0

ψkz
−k .

So, for s ⩽ t,

ψt = Ptsψs = P(τt − τs)ψs , P(τ) = e−τQ .

Marcinkiewicz gives the useful bounds

∥DP(τ)ψ∥p,r ⩽

{
C (p)/((1− ζ)τ), ζ < 1

C (p)/(τ ∧ (στ)1/2), ζ = 1.



Lp-estimates for martingales
Burkholder’s inequality states that, for all p ⩾ 2, there is a
constant C (p) <∞ such that, for all martingales M and all t ⩾ 0,

∥M∗
t ∥p ⩽ C (p)

(
∥⟨M⟩t∥1/2p/2 + ∥(∆M)∗∥p

)
.

Here
M∗

t = sup
s⩽t

|Ms |, (∆M)∗t = sup
s⩽t

|∆Ms |.

When M has the form

Mt =

�
(0,t]×E

H(s, y)µ̃(ds, dy)

for H previsible and µ̃ a compensated Poisson random measure of
intensity ds ⊗ λ(dy), the terms on the right are given by

⟨M⟩t =
� t

0

�
E
|H(s, y)|2λ(dy)ds

(∆M)∗t ⩽ sup
s⩽t,y∈E

|H(s, y)|.



Fluid limit interpolation in function spaces

(Xt)t⩾0 a Markov chain, state-space C (E ) say

X jumps from x = (x(z) : z ∈ E ) by ∆(x , θ) ∈ C (E )
at rate λ(x , θ)dθ for θ ∈ [0, 2π]

ẋt = b(xt), where b is a vector field on C (E )

We can write X in terms of a random measure µ on
[0, 2π]× (0,∞) with previsible compensator λ(Xt−, θ)dθdt

Xt(z) = x0(z) +

�
[0,2π]×(0,t]

∆(Xs−, θ)(z)µ(dθ, ds).

Then the interpolation formula takes the form Xt − xt = Mt + At

where

Mu(z) =

�
[0,2π]×(0,u]

Pts∆(Xs−, θ)(z)µ̃(dθ, ds)

At(z) =

� t

0
Pts(β(Xs)− b(xs)−∇b(xs)(Xs − xs))(z)ds.



Estimation of Mt(z) in Lp(E , dz)

Apply Burkholder’s inequality to (Mu(z))u⩽t for each z and then
integrate to obtain

9 Mt9p :=

(
E
�
E
|Mt(z)|pdz

)1/p

= ∥∥Mt∥Lp(Ω)∥Lp(E)

⩽ C (p)
(
9⟨M(.)⟩t 91/2

p/2 + 9 (∆M(.))∗t9p

)
.

Now

⟨M(z)⟩t =
� t

0

� 2π

0
|Pts∆(Xs , θ)(z)|2λ(Xs , θ)dθds

so

∥⟨M(.)⟩t∥Lp/2(E) ⩽
� t

0

� 2π

0
∥Pts∆(Xs , θ)∥2Lp(E)λ

∗(θ)dθds

and so

9⟨M(.)⟩t9p/2 ⩽
� t

0
∥Pts∥2p→pds

� 2π

0
∥∆∗(θ)∥2pλ∗(θ)dθ.



We would like to understand ...

Dynamics for the LK(ζ) equation, especially the case ζ = 1. What
is the domain of attraction for disks?

Limits for the case ζ = 1 and σ = c1/3. For a closely related
model, formally, we see convergence of fluctuations to the KPZ
equation on long time-scales.

For ζ > 1 the LK(ζ) equation fails to capture the dynamics. So
What does the driving measure for ALE look like when ζ > 1 and
c is small?


